
High Speed On-Line Motion Planning in Cluttered Environments

Zvi Shiller and Sanjeev Sharma

Abstract— This paper presents an efficient algorithm for on-
line obstacle avoidance that accounts for robot dynamics and
actuator constraints. The robot trajectory (path and speed) is
generated on-line by avoiding obstacles optimally one at a time.
This reduces the original problem from one with m obstacles to
m simpler problems with one obstacle each, thus resulting in a
planner that is linear, instead of exponential, in the number of
obstacles. While this approach is quite general and applicable
to any cost function and to any robot dynamics, it is treated
here for minimum time motions, a point mass robot, and planar
circular obstacles.

I. INTRODUCTION

This paper presents an algorithm for near-optimal obstacle

avoidance of a mobile robot moving in static cluttered envi-

ronments. It generates trajectories that satisfy robot dynamics

and actuator constraints, and can be proven to reach the goal

when assuming zero terminal speeds. The incremental gener-

ation of the trajectories and the relatively low computational

requirement at each step make this algorithm suitable for on-

line applications. The avoidance of one obstacle at a time

allows the algorithm to generate trajectories through very

cluttered environments.

The time-optimal control problem for robotic manipulators

has been addressed in numerous studies over the past twenty

years (see for example [2], [6], [11], [14], [15]). This

problem is inherently off-line, as it requires the solution of a

two point boundary value problem. The typically nonlinear

and coupled robot dynamics make such solutions computa-

tionally extensive. Adding obstacles makes the computational

challenge even harder.

Off-line computation of time-optimal trajectories may suf-

fice in applications involving repeatable tasks, but is some-

what useless for “on-line” applications, when the next move

is determined during motion (on-line). Obviously, waiting for

a time-optimal trajectory to be computed defeats the purpose

of minimizing time.

One approach to solving the time optimal control problem

on-line is to derive a time-optimal control law that drives

the system time-optimally to the goal from any initial state.

To derive such a control law requires solving the Hamilton-

Jacobi-Bellman (HJB) equation, which in turn requires the

derivation of the value function [1]. The globally optimal

trajectory is then generated by selecting the controls that

This work was performed at the Paslin Laboratory for Robotics Au-
tonomous Vehicles at the Ariel University Center, Israel.

Zvi Shiller is with the Department of Mechanical Engineer-
ing and Mechatronics, Ariel University Center of Samaria, Israel
(shiller@ariel.ac.il)

Sanjeev Sharma is a visiting scholar at the Paslin Laboratory for Robotics
Autonomous Vehicles at the Ariel University Center, Israel

minimize the time derivative of the value function. Although

the theoretical framework exists for deriving optimal feed-

back controllers, it is impractical to derive a time-optimal

control law for a typical obstacle avoidance problem that

accounts for robot dynamics.

Recent works have addressed online motion planning,

using RRT [8], local path-set generation [7] and mixed-

integer linear programming (MILP) [10]. However, they

are inefficient for crowded and tightly spaced environments

with narrow passages. Online avoidance can be achieved

by navigating in the robot’s velocity space using Velocity

Obstacles [9]. While this approach is applicable to static

and moving obstacles, it requires that the time horizon be

carefully determined, for otherwise the robot may avoid

passing through tight spaces. The selection of the proper

time horizon is still unresolved.

In this paper, we address the online obstacle avoidance

problem in static environments. Motivated by the observation

that the effect of an obstacle on the value function (the

global cost-to-go function) is local, we solve the multi-

obstacle problem by avoiding obstacles one at a time. Com-

putationally, this transforms the multi-obstacle problem with

m obstacles to m simpler sub-problems with one obstacle

each, thus reducing the size of the problem from exponential

to linear in the number of obstacles. As a result, this

approach produces an on-line planner, i.e. the trajectory is

generated incrementally, one step at a time, requiring a low

computational effort at each step relative to the original,

inherently off-line, problem. The algorithm is demonstrated

in several examples for a planar point robot moving among

many (70) obstacles.

II. OPTIMAL AVOIDANCE OF A SINGLE OBSTACLE

The time optimal avoidance of a single obstacle in the

plane is relatively simple. It can be computed using a

global optimization [12], or by running a local optimization

[11] twice (one for each side of the obstacle for a planar

problem). For simplicity, we choose to represent the robot

by a point mass model in the plane. This simplification is

for computational reasons, and is in no way a limitation of

this approach.

Consider the following point mass model:

ẍ = u1 ; |u1| ≤ 1

ÿ = u2 ; |u2| ≤ 1 (1)

where (x,y)T ∈R
2 and (u1,u2)

T ∈R
2 represent the positions

and actuator efforts along the x and y axes, respectively .

Define the state vector for system (1) as x = (x1,x2,y1,y2)
T ,

where (x1,x2) = (x, ẋ) and (y1,y2) = (y, ẏ).

We first derive the unconstrained trajectory, for states not

affected by the presence of the obstacle.

A. The Unconstrained Trajectory

The unconstrained trajectory for the decoupled system (1)

is determined by the minimum motion time of the slowest

axis.

Consider first a single axis, represented by the double

integrator

ẋ1 = x2

ẋ2 = u ; |u| ≤ 1. (2)

Using optimal control theory [3], it is easy to show that the

time-optimal control for system (2) is bang-bang with at

most one switch. In the following, we denote x = (x1,x2)
and x f = (x1 f ,x2 f):

The minimum time-to-go from any state x to x f can be

computed analytically [4]:

t f (x,x f) =−x2 − x2 f +2

√

−x1 + x1 f +
x2

2

2
+

x2
2 f

2
, i f x ∈ R

x2 + x2 f +2

√

+x1 − x1 f +
x2

2

2
+

x2
2 f

2
, otherwise

where

R = {(x) |S1(x)> 0,S2(x)< 0}, (3)

and

S1(x) = x2
2 −2(x1 − x1 f +

x2
2 f

2
) = 0,

S2(x) = x2
2 +2(x1 − x1 f −

x2
2 f

2
) = 0. (4)

Since the minimum time trajectory has only one switch

(excluding initial states on the switching curves), reaching

the target at a time greater than the minimum time, t f , using

bang-bang control, requires more than one switch, as stated

in the following Lemma, ommitting the proof for brevity.

Lemma 2.1: Let t f be the optimal time from some state

x, that is not on one of the switching curves, to x f . Any

bang-bang trajectory from x to x f that takes time t > t f has

at least two switches.

The trajectories that reach the target state in a specified

time (greater than the optimal time t f) are not unique since

the number of switches and their timing are not unique. They

are, however, bounded by two bang-bang trajectories with

only two switches each. We call the two-switch trajectories

the extremal trajectories.

The extremal controls, umax and umin, that generate the two

extremal trajectories can be computed analytically:

umax(t) =

1 if t ∈ [0, ts1]

−1 if t ∈ [ts1, ts2]

1 if t ∈ [ts2,T]

(5)

umin(t) =

−1 if t ∈ [0, ts3]

1 if t ∈ [ts3, ts4]

−1 if t ∈ [ts4,T]

(6)

where T > t f is specified, and

ts1 =
1

2α
(x1 f − x10 +2αT − x20T − T 2

2
−α2)

ts2 = ts1 + α

α =
(T + x20 − x2 f)

2
, (7)

ts3 =
1

2β
(x1 f − x10 −2βT − x20T +

T 2

2
+β 2)

ts4 = ts3 + β

β =
(T − x20 + x2 f)

2
. (8)

Returning to the two axes system (1), the unconstrained

trajectory from any state x = (x1,x2,y1,y2) to the target state

x f = (x1 f ,x2 f ,y1 f ,y2 f) is determined by the optimal motion

time of the slowest axis. Henceforth, we assume, without

loss of generality, that the faster axis from any initial state

x0 = (x10,x20,y10,y20) to the target state x f is the y-axis. The

time-optimal trajectory is thus obtained by driving the x-axis

optimally, using (3), and driving the y-axis so that it reaches

the target at the same final time, t f . The trajectory of the

x-axis is unique with one switch. The trajectory of the faster

y-axis has at least two switches, and is thus not unique. It

follows that the time-optimal path between the end points is

not unique. The set of all time-optimal paths is bounded by

two extremal paths, generated by the extremal trajectories of

the slowest axis. Note that if the optimal motion times of

both axes are identical, then the time-optimal trajectory is

unique.

The extremal trajectories are needed to determine whether

an obstacle is avoidable by an unconstrained trajectory. The

unconstrained trajectory can be used as long as at least

one extremal trajectory avoids the obstacle. Otherwise, the

obstacle must be avoided using the constrained trajectory

discussed next.

B. The Constrained Trajectory

The constrained trajectory applies to points in the state-

space from which all unconstrained time-optimal trajectories

to the target intersect the obstacle, as shown schematically

in Fig. 1. We refer to the set of such points as the Obstacle

Shadow. In the kinematic case [16], the shadow corresponds

to the shadow created behind the obstacle by a point light

source at the target. The physical analogy for the dynamic

problem is not as obvious. In the following, we consider one

planar obstacle.

Definition 2.1: Obstacle Shadow. The Obstacle Shadow,

D, of obstacle OB is the set of initial states from which

all unconstrained time-optimal paths (the projections of the

trajectories on the position space) intersect the obstacle.

The intersection of all the extremal time-optimal paths

with the obstacle implies the intersection of all unconstrained

optimal paths. Therefore, determining if a state belongs to

x f

x0

Extremal paths

Fig. 1. A point in the obstacle shadow.

the shadow of a given obstacle requires only to determine if

both extremal trajectories intersect the obstacle. For points

lying in the obstacle shadow, we compute the optimal time

of the trajectory that avoids the obstacle, numerically, using

a line search (one parameter optimization).

The set of all feasible trajectories for system (1) that reach

the goal at a specified time is bounded by two extremal

trajectories, corresponding to combinations of the extremal

trajectories for the individual axes (5,6). Thus, the obstacle

cannot be avoided in time t f +δ if and only if both extremal

trajectories intersect the obstacle. It is easy to show that a

sufficient increase in δ should yield an avoiding trajectory.

We therefore compute the constrained time-optimal trajectory

by selecting δ such that at least one extremal trajectory from

the current state to the target does not intersect the obstacle.

The computation of the constrained trajectory for avoiding

one obstacle is, therefore, a single dimensional optimization,

independent of the dimension of the state-space, and of the

particular shape of the obstacle.

So far we have considered states from which the presence

of the obstacle affects the optimal motion time to the target.

The obstacle shadow may include infeasible states from

which the obstacle is unavoidable. We call it the Obstacle

Hole, as discussed next.

C. Infeasible States: The Obstacle Hole

A state from which the entire set of attainable positions,

generated by controls satisfying (1) , intersects the obstacle

at some time t ∈ [0, t f] is an infeasible state, i.e., a state from

which all feasible trajectories intersect the obstacle. The set

of all infeasible states forms the Obstacle Hole. The obstacle

hole is similar to the ICS (Inevitable Collision States) [5].

Definition 2.2: Obstacle Hole. A given state x is said to

lie in the obstacle hole OH of a planar obstacle OB if all

feasible trajectories from x intersect OB at some time t > 0.

Fig. 2 shows the obstacle hole for a circular planar obstacle

for motion at velocities pointing in the left direction. Each

curve represents the boundary of the set of positions from

which the obstacle is unavoidable at a specific velocity.

5 m/s

3 m/s
1 m/s

Velocity direction

Fig. 2. The obstacle hole for a circular planar obstacle for velocities
pointing leftwards.

III. MULTI-OBSTACLE AVOIDANCE

The optimal avoidance of one obstacle is relatively simple,

and is hence suitable for on-line computation. We use it to

solve the multi-obstacle problem by avoiding obstacles one

at a time. Key to this approach is the selection of the current

obstacle to be avoided at any given time, as discussed next.

A. The Current Obstacle

We choose the current obstacle to be the one that takes

the longest time to avoid from the current state to the goal.

Selecting at each step the obstacle with the highest cost to

the goal produces a trajectory that is close to optimal.

The current obstacle is thus selected by first determining

all obstacles with shadows containing the current state x, then

computing the constrained trajectories avoiding each obstacle

to the goal, and selecting the one with the largest motion

time. If x does not lie in the shadow of any obstacle, then

the cost of all obstacles equals to the unconstrained trajectory

to the goal and none is selected to be avoided. One of the

unconstrained trajectories is then selected for navigation .

B. The Avoidance Algorithm

The avoidance algorithm assumes convex and non-

overlapping obstacles (in the configuration space). It selects

the current obstacles to be avoided, computes the time

optimal trajectory that avoids that obstacle, and repeats the

process until the final goal is reached. To avoid chatter

between obstacles of equal cost, the algorithm selects an

intermediate goal on the boundary of the current obstacle.

A few intermediate goals might be selected, repeating the

algorithm recursively to each one. The use of intermediate

goals ensures convergence to the global goal in a finite time,

as discussed later.

Algorithm 1: Avoidance using intermediate goals

Initialize Set current state x = x0, current goal

xg(i) = x f , index of current goal i = 0. Select the

termination condition ε , and time step ∆t.

Step 1. Determine the index k of the current

obstacle, OBk, to xg(i).
If k = 0, go to Step 2.

Compute the optimal trajectory xc(t) avoiding OBk

to xg(i).
Increment index of intermediate goals i = i+1.

Select an intermediate goal xg(i) on the boundary

of OBk.

If xg(i) is not in the obstacle hole of any obstacle,

go to Step 2.

Reduce the speed of xg(i) (lower speed while

retaining position and direction) until the modified

xg(i) is not in the hole of any obstacle.

Step 2. Follow the optimal trajectory for some time

step ∆t.

Update x.

If |x− xg(i)| ≤ ε , i = i−1. If i =−1, STOP.

Go to Step 1.

Algorithm 1 progresses to the goal via a series of selected

intermediate goals. Each intermediate goal xg(i) (i ≥ 1)

is selected along the constrained trajectory xc(t) from the

current state x to the current goal xg(i−1) at a point where

xc(t) is tangent to the current obstacle OBk. Usually, there

is just one such point. In case xc(t) follows the obstacle for

some time, the point closest (in time) to the goal xg(i− 1)
is selected.

Algorithm 1 may fail if the shadows of two obstacles

intersect because the trajectory will chatter between the

two obstacles until reaching a dead end at the intersection

point. This is remedied by reducing the target velocity at the

intermediate goal to the maximum velocity from which the

trajectory can circle the current obstacle without violating

the acceleration constraints. Denoting this velocity as the

curvature velocity, it can be easily proven that the curvature

velocity does not lie in the obstacle hole of any obstacle, as

stated in the following Lemma.

Definition 3.1: Curvature Velocity. The curvature veloc-

ity, vc, is defined as:

vc =
√

umaxR (9)

where umax is the maximum acceleration, and R is the radius

of the obstacle.

Lemma 3.1: Under the assumption that the obstacles are

convex and do not overlap, the curvature velocity, as defined

in (9), from a position on the boundary of an obstacle of

radius R, is guaranteed to be outside the obstacle hole of

any other obstacle.

C. Convergence

We can prove convergence only for zero terminal speeds.

Even if the final state (position and velocity) is reachable

from the initial state for the obstacle-free problem, it may

not be reachable for the obstacle avoidance problem because

of the reduction in speed caused by the need to pass

through tight spaces between obstacles. Furthermore, the

loops created when the terminal speed is too high or too

low (at least one axis moves in the opposite direction to

pick up, or reduce, speed) may not be feasible because of

the presence of obstacles.

Theorem 3.2: Consider the initial and final points xp0 and

xp f , which are the projections to the configuration space

of the initial and final states x0 and x f , respectively. The

trajectory generated by Algorithm 1 terminates at the goal

xp f in a finite time, for all initial points xp0, assuming that

xp f and xp0 are connected.

Proof: Algorithm 1 progresses recursively by moving

to a sequence of intermediate goals. To prove convergence,

it is sufficient to show that the path (the projection of the

trajectory to the configuration space) generated by Algorithm

1 reaches the goal xp f from any point xp0, and is of finite

length.

With the generation of each intermediate goal, the algo-

rithm subdivides the avoidance problem, from the current

state x to the current goal xg(i − 1), into two smaller

problems: 1) from the current state x to the intermediate goal

xg(i), and 2) from the intermediate goal xg(i) to the current

goal xg(i − 1). Both problems have a kinematic solution

(path connecting the end points), since by assumption the

obstacles are convex and non-overlapping. Each introduction

of an intermediate goal subdivides the problem into smaller

segments until the intermediate goal is reachable by an

unconstrained trajectory. The size of the smallest segment

is bounded by the longest time optimal trajectory between

any two obstacles. The number of such segments is bounded

by the number of obstacles, which is assumed to be finite.

�

D. Optimality

The trajectory generated by Algorithm 1 is not necessarily

optimal, since each step is only locally optimal. Anecdotal

examples show that the paths (projection of the trajectory

to the configuration pace) generated by Algorithm 1 are

close to the global time optimal paths computed by a global

search [13]. The motion time along the on-line trajectory is

always higher than the global optimal motion time due to

the curvature velocity (9) imposed at the intermediate goals.

E. Computational Issues

The consideration of the obstacle constraints one at a time

reduces the original computationally exponential problem

with m obstacles to m simple sub-problems with one obstacle

each. That the original problem is exponential in the number

of obstacles m becomes obvious if we simply count the

number of potential local minima, which is 2m,m ≥ 1 (each

planar obstacle contributes 2 local minima).

The cost for this reduction is the loss of optimality, and

the need to check at each time step if all obstacles intersect

the unconstrained optimal path from the current state, and

for those that do, solve the single obstacle problem. This

may seem excessive, but the alternative (solving the original

exponential problem) is much worse. Our approach generates

the trajectory incrementally, unlike the original problem that

requires a complete solution before making the first move.

In fact, for problems with many obstacles (see the following

examples with 70 obstacles), the on-line (heuristic) solution

may be the only viable alternative. It is important to note

that the computation at each time step is identical for each

obstacle, and can hence benefit from parallel computing.

IV. EXAMPLES AND EXPERIMENTS

Algorithm 1 was implemented in MATLAB on an Intel

core-i7 desktop computer. Its efficiency is demonstrated for a

planar environment, consisting of 70, tightly spaced circular

obstacles. In all experiments, the speeds at the intermediate

goals are upper bounded by the curvature velocity (9).

A. Experiment 1

Algorithm was tested for 500 different start-goal config-

urations, selected randomly in the free space, as shown in

Figure 3. Also shown are the initial and final points as red

and blue dots, respectively. The time-step ∆T was set to 0.1s.

The algorithm succeeded in reaching the goal-state in all

the 500 start-goal configurations. The average speed along

the 500 trajectories was 2.3m/s with a standard deviation

of 0.43m/s. Repeating this experiment without obstacles,

using the same start-goal configurations as previously, and

computing the trajectory between every pair analytically,

resulted in an average speed along the 500 trajectories of

4.3m/s with a standard deviation of 0.83m/s. Comparing

the average speed of the on-line trajectories with and without

obstacles suggests that, while the algorithm is not optimal,

it produces fast (54% of the average obstacle free optimal

time) trajectories in a very challenging environment.

B. Example 1

This example shows an on-line trajectory that avoids

70 obstacles, from the initial state (x1,x2,y1,y2) =
(10.46,0.001,58.26,−0.001)m to the target state

(x1 f ,x2 f ,y1 f ,y2 f) = (52.55,0,7.33,0)m, as shown in

Figure 4. The time step ∆t in was 0.1s. The motion time

along the online trajectory, shown Figure 4 with black dots,

is 35.2s, with a top speed of 3.4m/s and an average speed

of 2.1m/s. The intermediate goals are shown as empty

circles along the trajectory. There were 12 intermediate

goals generated for this trajectory. The total computation

time was 4.3s, with an average computation time of 11ms

per-step. The speed along the trajectory, as a function of

distance traveled, is shown in Figure 5. The oscillation in

the speed is produced due to the curvature velocity imposed

at the intermediate goals.

C. Example 2

This example demonstrates the on-line planner in

the same 70 obstacle environment, from the initial

state (x1,x2,y1,y2) = (55,0.1,0,0)m to the target state

(x1 f ,x2 f ,y1 f ,y2 f) = (0,0,60,0.1)m. The time step ∆t = 0.1s.

The on-line trajectory shown in Figure 6 was completed in

39.8s, with a top speed of 4.8m/s and an average speed

of 2.2m/s. The total computation time was 3.8s, with an

average computation time of 8ms per step. The speed along

the trajectory, as a function of distance traveled, is shown in

Figure 7.

D. Example 3

This example compares the on-line motion planner with

the global planner [12]. Figure 8 shows the trajectories gener-

ated by the on-line planner (black dots) and the global plan-

ner (red dots) from the start state (x1,x2,y1,y2) = (51,0,6,0)
to the goal state (x1 f ,x2 f ,y1 f ,y2 f) = (30,0,91,0). The on-

line and globally optimal trajectories have similar topologies

as they pass between the same obstacles. The velocity

profiles along both trajectories are shown in Figure 9. The

motion time along the on-line was 28.9s over a total distance

of 93.8m, with an average speed of 3.2m/s, compared to the

global optimal motion time of 20.7s over a total distance

traveled of 99m, and an average speed of 4.8m/s. This is

not a significant increase, considering that the global optimal

trajectory is smoother, allowing higher speeds than the on-

line trajectory, and that the speeds along the on-line trajectory

is reduced by the curvature velocities (9) at the intermediate

points.

An experiment with a real differential-drive robot, com-

paring the online and global optimal trajectories, for the

avoidance of 5-obstacles can be seen in the video attached

to this paper.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Fig. 3. The 500 random start-goal configurations for Experiment 1.

0 10 20 30 40 50 60

0

10

20

30

40

50

60
Start

Goal

Fig. 4. Trajectory generated on-line in a tightly spaced environment with
70 circular obstacles for Example 1.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

Distance Traveled [m]

S
p

e
e

d

 [
m

/s
]

Fig. 5. Speed as a function of distance traveled along the online trajectory
of Example 1.

V. CONCLUSIONS

An efficient motion planner for on-line near-time optimal

obstacle avoidance, in cluttered environments, was presented.

It avoids obstacles optimally one at a time, thus reducing the

complex problem of time-optimal avoidance of m obstacles

to m simpler problems, thereby reducing the computational

complexity of the original problem from exponential to linear

in the number of obstacles. This significant reduction in

the computational effort and the incremental nature of this

approach make it suitable for on-line applications, such as

mobile robots moving amongst many obstacles. By following

the intermediate goals, which break the navigation problem

0 10 20 30 40 50 60

0

10

20

30

40

50

60
Goal

Start

Fig. 6. Online trajectory avoiding 70 obstacles in Example 2.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

Distance Traveled [m]

S
p

e
e

d

 [
m

/s
]

Fig. 7. Speed as a function of distance traveled during the online trajectory
of Example 2.

into many simpler problems, the algorithm converges to the

goal from any feasible state, despite the local increase in

the cost produced by lowering the speed at the intermediate

goals. The approach is applicable to any robot dynamics

and to general obstacles. The implementation presented in

this paper, however, has focused on a point mass model

and planar obstacles. This simplification is necessary for

computational reasons. Computation time of 11ms per-step

were demonstrated for very challenging environments with

70 obstacles, suggesting a re-planning frequency of 90 Hz,

which makes it suitable for planning in changing environ-

ments. This approach is applicable to known environments,

or to environments that can be detected by global sensors,

such as overhead cameras identifying all obstacles in a given

space. With minor modifications, it can be used for sensor-

based planning by considering only the obstacles within the

visibility range of the on-board sensor. This would entail

adding constraints on the robot speed so that it can stop at the

boundary of its visibility range. Although this approach does

not guarantee optimality, numerical examples demonstrate

close correlation between the on-line solution and the global

optimal trajectories.

VI. ACKNOWLEDGMENTS

This work was motivated by the research conducted by Dr.

Satish Sundar during his doctoral studies at the University of

California Los Angeles. The generous support of Dr. David

Paslin for the Paslin Laboratory for Robots and Autonomous

Vehicles is gratefully acknowledged.

REFERENCES

[1] M. Athans. Optimal Control: An Introduction to the Theory and It’s

Applications. Academic Press, New York, 1965.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90
Goal

Start

Fig. 8. The trajectories generated by global (red) and online (black)
planners, among 48 obstacles, in Example 3.

0 20 40 60 80 100
0

2

4

6

8

10

Online

Global

Distance Traveled [m]

S
p

e
e

d

 [
m

/s
]

Fig. 9. Speed as a function of distance traveled for the online and global
trajectories in Example 3.

[2] J.E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-optimal control of
robotic manipulators. IJRR, 4(3), 1985.

[3] A.E. Bryson and Y.C. Ho. Applied Optimal Control. Blaisdell
Publishing Co., Cambridge, MA, 1969.

[4] S. Dreyfus. Dynamic Programming and the Calculus of Variations.
Academic Press, New York, 1965.

[5] T. Fraichard and H. Asama. Inevitable collision states. a step towards
safer robots? Advanced Robotics, 18(10), 2004.

[6] M.E Khan and B. Roth. The near-minimum time control of open loop
articulated kinematic chains. J. Dyn. Sys. Meas. Ctrl., 93(3):164–172,
Sept. 1971.

[7] R.A. Knepper and M.T. Mason. Path diversity is only part of the
problem. In Internationa Conference on Robotics and Automation,
2009.

[8] Y. Kuwata, G.A. Fiore, J. Teo, E. Frazzoli, and J.P. How. Motion
planning for urban driving using RRT. In IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 1681–1686, 2008.
[9] Fiorini P. and Shiller Z. Motion planning in dynamic environments

using velocity obstacles. International Journal of Robotics Research,
17:760–772, 1998.

[10] T. Schouwenaars, J. How, and E. Feron. Receding horizon path
planning with implicit safety guarantees. In American Control Conf.,
pages 5576 – 5581, 2004.

[11] Z. Shiller and S. Dubowsky. Time-optimal path-planning for robotic
manipulators with obstacles, actuator, gripper and payload constraints.
IJRR, 8(6):3–18, Dec. 1989.

[12] Z. Shiller and S. Dubowsky. On computing the global time optimal
motions of robotic manipulators in the presence of obstacles. IEEE

Transactions on Robotics and Automation, 7(6):785–797, Dec. 1991.
[13] Z. Shiller and Y.R. Gwo. Dynamic motion planning of autonomous

vehicles. IEEE Transactions on Robotocis and Automation., 7(2):241–
249, April 1991.

[14] Z. Shiller and H.H. Lu. Computation of path constrained time-optimal
motions with dynamic singularities. ASME Jnl. Dyn. Sys. Meas. Ctrl.,
114(1):34–40, March 1992.

[15] K.G. Shin and N.D. McKay. Minimum-time control of robotic
manipulators with geometric path constraints. IEEE Trans. Aut. Ctrl.,
AC-30(6):531–541, June 1985.

[16] S. Sundar and Z. Shiller. Optimal obstacle avoidance based on
sufficient conditions of optimality. IEEE Transactions of Robotics

and Automation, 13(2):305–310, 1997.

