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Abstract—On-line motion planning in unknown environments
is a challenging problem as it requires (i) ensuring collision
avoidance and (ii) minimizing the motion time, while continuously
predicting where to go next. Previous approaches to on-line
motion planning assume that a rough map of the environment is
available, thereby simplifying the problem. This paper presents
a reactive on-line motion planner, Robust Autonomous Waypoint
generation (RAW), for mobile robots navigating in unknown and
unstructured environments. RAW generates a locally maximal
ellipsoid around the robot, using semi-definite programming,
such that the surrounding obstacles lie outside the ellipsoid. A re-
inforcement learning agent then generates a local waypoint in the
robot’s field of view, inside the ellipsoid. The robot navigates to
the waypoint and the process iterates until it reaches the goal. By
following the waypoints the robot navigates through a sequence
of overlapping ellipsoids, and avoids collision. Robot’s safety is
guaranteed theoretically and the claims are validated through
rigorous numerical experiments in four different experimental
setups. Near-optimality is shown empirically by comparing RAW
trajectories with the global optimal trajectories.

I. INTRODUCTION

Autonomous vehicles and robots will soon help, or perhaps

replace, humans in the tasks that are time consuming, hard

or unsafe. Such tasks include autonomous driving, search and

rescue, patrolling and engaging with enemy forces — often

confronting unseen, hostile and unstructured environments.

A common challenge underlying these tasks is efficient on-

line motion planning: deciding where to go next, ensuring

collision avoidance and minimizing the motion time. Thus,

the trajectory generator for such vehicles and robots should

be able to (i) minimize the motion time, (ii) decide where to

go, and (iii) ensure collision avoidance.

This paper presents an on-line reactive motion planner,

Robust Autonomous Waypoint generation (RAW), for mobile

robots navigating in unknown and unstructured environments.

RAW generates a locally maximal ellipsoid, using semi-

definite programming, around the robot, separating it from

the surrounding obstacles. A reinforcement learning agent then

makes a decision about where to go and generates a waypoint

inside the ellipsoid. The robot then navigates, remaining

inside the ellipsoid, towards the waypoint. By following the

waypoints to the goal, the robot navigates through a sequence

of (overlapping) ellipsoids — a virtual, obstacle free, tunnel.

RAW assumes that the robot has limited field of view and has

access to its coordinates or relative position to the goal.

On-line motion planning for mobile robots has been a

focus of the robotics community for the past three decades.

The previous approaches can be broadly categorized as: (i)

assuming that a complete map of the environment is available;

(ii) using some known structure in the environment; and (iii)

assuming that a global path or a global guidance function

is available (as may be derived from a potential function or

through a graph search). Fox et al. [4] introduced dynamic

window to search for admissible velocities in a given time

frame, to avoid collisions in known environments. Fiorini and

Shiller [3] proposed velocity obstacles for motion planning

in known environments. Velocity obstacle based approaches

require carefully tuning the time-step parameter to avoid

poor performance. Shiller et al. [15, 16] introduced an on-

line planner that generates a sequence of intermediate goals

in the environment, and produces a trajectory to the goal,

passing through the intermediate goals. However, the approach

assumes that a full map of the environment is available. Sam-

pling based approaches, like RRT [8], have been successfully

demonstrated in many robotics applications. However, RRT

based methods are in general limited to known environments.

Quinlan and Khatib [11] proposed elastic band for opti-

mizing an initial collision free configuration-space path to

the goal. The path is adjusted (and smoothed) on-line for

sensor based obstacle avoidance. However, it assumes that the

deviations from the global path are small. If the deviations are

large, the approach may fail, requiring the global path to be

recomputed using the updated information (also see [9] and [1]

for similar works). The assumption of availability of such a

global path to the goal is invalid in this paper.

Local path-set approaches were used by many finalists of

the DARPA Urban Challenge, successfully demonstrating its

application to motion planning in unknown environments.

Kuwata et al. [7] presented non-fixed random path-sets using

RRT. A similar work is fixed path-set, presented by Knep-

per et al. [5] (and references therein). Path-set methods rely

on a global guidance function to guide the search towards

the goal, and often constructing such a function requires

map of the environment. In the DARPA Urban Challenge,
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the structure of the problem (following a road) was used

as a heuristic to constrain the paths to end parallel to the

road. Such a heuristic, or a navigation function, may not be

available in unstructured and unknown environments. Minguez

and Montano [10] introduced the ego-kinodynamic space (E-

KS), building a local space for generating trajectories and

reactively avoiding collisions. E-KS takes the robot’s stopping

distance into account and guarantees safety within a certain

time interval. However, (i) it uses potential fields to guide

the robot to the goal, and potential fields assume that a map

of the environment is available; and (ii) with limited field

of view, the safety may not be guaranteed at future time-

steps — a trajectory along which the braking constraint is

not yet active may lead to collision with an obstacle not

observed in the current view. A similar approach is anytime

re-planning using a graph search in the local high-dimensional

lattice-space [6, 21]. The robot executes a global path obtained

using the graph-search and re-planning is done upon receiving

the updated information. The changes in the environment are

assumed to be small, or the global plan may fail, thereby

requiring the global-search to be re-performed.

II. THE PROPOSED ALGORITHM: RAW

Having discussed the underlying simplifications of the pre-

vious approaches to on-line motion planning, this section now

presents the proposed approach for on-line motion planning

in unknown and unstructured environments. The previous

work [14] presented an autonomous waypoint generation

strategy (AWGS) for on-line path planning in unknown and

unstructured environments. In AWGS, a reinforcement learn-

ing [17] (RL) agent analyzes the local surroundings of the

robot and then generates a waypoint in its field of view

(FOV). The robot then navigates to the waypoint and the

process iterates until it reaches the goal. AWGS builds a novel

representation that makes the RL agent’s policy environment

independent — the policy is learned in one environment

and can be reused in novel environments without requiring

relearning. This makes AWGS suitable for mobile robot nav-

igation in unknown environments. However, AWGS assumes

that the robot can execute arbitrary motion commands to avoid

collisions, and therefore disregards the safety concern. A robot

with kinodynamic constraints, such as a minimum turn-radius

constraint, cannot move arbitrarily to avoid collisions. Thus,

the robot’s safety is not guaranteed in AWGS. To ensure safety

of the robot, a waypoint generated at current time-step, say

tcurrent, must ensure safety at any time t > tcurrent.
In AWGS, the agent learns its policy using a reward function

that encourages it to reach the goal quickly, while penalizing

for collisions with the obstacles. Designing a reward function

that balances safety and optimality is a challenging prob-

lem [18, 19]. A too large penalty for collisions may make

the RL agent too conservative and it may never navigate

through a tight space, even if a collision free path exists. A

too low penalty may result in collisions as the RL agent will

try to reach the goal quickly to get a higher reward, ignoring

the collisions. Furthermore, when faced with robot’s motion
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Figure 1: RAW uses semi-definite program to filter out potentially dangerous
waypoint (SDP filter) locations, to guarantee robot’s safety in unknown
environments. Modification to AWGS is indicated using a red box.

constraints, the RL agent may fail to recognize a waypoint

that may result in a collision in future. To ensure the robot’s

safety, the problem can be formulated as a constrained Markov

decision process [19] (C-MDP). However, solving a C-MDP

is computationally very expensive, requiring a solution to

a mixed-integer linear program or an exhaustive look-ahead

search with branch and bound, both limited to a small finite

(discrete) state-space and require full map of the environment.

RAW addresses the safety issue by forming a locally maxi-

mal ellipsoid, using semi-definite programming (SDP), around

the robot and discards the waypoint locations that lie outside

the ellipsoid. The surrounding obstacles are constrained to lie

outside the ellipsoid. Any two consecutive ellipsoids overlap

with each other such that the robot lies in the region of

intersection of the two ellipsoids. Thus, if the robot’s initial

configuration is feasible, i.e. separated from the surrounding

obstacles by an ellipsoid, then the robot’s trajectory is guar-

anteed to be collision free. As shown in Figure 1, RAW uses

AWGS architecture for waypoint generation, but removes the

potentially dangerous waypoint locations (SDP Filter). The

ellipsoid effectively filters out the infeasible actions using SDP.

The contribution of this paper is an on-line reactive motion

planner for mobile robot navigation in unknown and un-

structured environments that (i) guarantees collision avoidance

with unforeseeable obstacles, assuming that the robot’s initial

configuration is feasible, and (ii) produces trajectories that

are not far from the optimal trajectories. In RAW, the RL

agent takes a locally-feasible optimal action at each planning

cycle. However, in unknown environments, no theoretical

guarantee can be provided on the path optimality. Thus, RAW

trajectories are compared with the optimal trajectories and

those generated by the RRT, to show that the sequence of

locally optimal actions generate reasonably good trajectories

(when the environment has no dead-ends, as discussed later).

The next section discusses AWGS; section-IV describes the

robot model and waypoint generation with robot’s motion

constraints; section-IV-B describes the SDP for filtering the

waypoints to ensure the robot’s safety; section-V discusses

the empirical results; and section-VI concludes the paper.

III. NOTATION, ASSUMPTIONS AND BACKGROUND

It is assumed that: (i) the robot’s field of view (FOV)

is limited; (ii) obstacles in the FOV are static and fully

characterized; and (iii) the robot has access to its coordinates

zt, at time-step t, and the coordinates of the goal zg. The

robot’s configuration (position and orientation) at time t is

represented as Ct. Obstacles in the FOV are represented using

a point cloud, Ot, of m obstacles at time t; vT represents the

transpose of a vector v; and S2
++ represents the space of all
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Figure 2: (a) shows the grid-points as red-dots and (b) shows the potential
map; red regions represent higher (i.e., dangerous) grid-point values.

2× 2 positive definite symmetric matrices.

A. Reinforcement Learning: Markov Decision Process (MDP)

In an MDP, a state-action value function Qπ(st, at) for a

policy π is the expected return of taking action at in state st
and then following π. The probability of taking an action at in

st is π(st, at). The RL agent’s task is to learn π that maximizes

the expected sum of discounted future rewards from any st,
with discount factor γ ∈ [0, 1). By taking action at in st, the

agent makes a transition to state st+1, and receives a reward

rt(st, at, st+1). Qπ is approximated using a linear function

approximation architecture: Q(st, at) = 〈φ(st, at), w〉, where

φ(st, at) ∈ R
k is the state-action feature vector for (st, at)

and w ∈ R
k is learned using the samples.

B. Autonomous Waypoint Generation Strategy (AWGS)

In AWGS, an RL agent analyzes the robot’s FOV. The

local region in the FOV is represented by a potential map,

which requires descretizing the FOV. The FOV is defined by

r ∈ (0, RFOV] and θ ∈ [−θFOV, θFOV]; {RFOV, θFOV} control

the robot’s view. r and θ are descretized in steps of dr and

dθ. The total number of discrete grid-points, N , in the robot’s

FOV is ((2θFOV/dθ)+1)RFOV/dr. One of these grid-points is

then selected as a waypoint by the RL agent. The obstacles in

the FOV are represented as a point cloud Ot, at time-step t. A

potential map V ∈ [0, 1]N is then computed; the ith element

of V is the potential of the ith grid-point. Figure 2 shows the

grid-points and corresponding potential map.

Next, a feature space is constructed for the RL agent for

generating a waypoint. The feature space is constructed using

the potential map and three geometric parameters for each of

the grid points in the FOV. The first two geometric parameters

for a grid-point compute the progress towards the goal if that

grid-point is selected as the waypoint. The third parameter

ζj = 1 if a straight line path to the jth grid-point collides with

an obstacle, and ζj = 0 otherwise. The robot’s current position

represents the agent’s state, while an action corresponds to

selecting one of the grid-points as the waypoint. Thus, at

each time-step, the RL agent has N possible actions. Once

the waypoint is generated, the robot follows a local trajectory

to the waypoint for time ∆T . The RL agent learns a policy

using a reward function that penalizes the agent for generating

the waypoints in obstructed regions of the FOV (when ζj = 1)

or close to the boundary of obstacles (as measured by grid-

point’s value in potential map). For selecting the jth grid-point

as a waypoint, it receives a reward:

reward = −103ζj − α1Vj +max{α2500,−5},
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Figure 3: (a) A simple car like robot; and (b) shows a situation where the
robot gets close to the wall and crosses it to reach the goal at the top-right
corner, i.e. the safety of the robot is not guaranteed in AWGS.

where α1 is a constant that controls penalty for defining the

waypoints close to obstacles, and α2 = 1 if the waypoint is

defined at the goal and is −1 otherwise. max{·} returns either

+500 or −5, encouraging the agent to reach the goal quickly.

IV. MOTION PLANNING: CAR-LIKE ROBOT

This paper considers a simple (Reeds and Shepp’s) car-

like robot shown in Figure 3a. The configuration of the

robot in space at time t is Ct = (xt, yt, θt) — its position

(zt) and orientation (with respect to x-axis) at time t. The

distance between the front and real axle, L, is 1m and

the minimum turning radius is also 1m. The coordinates of

four corners on the robot’s body (a rectangle), according to

its current configuration Ct, are represented using a matrix

Ξ(Ct) ∈ R
4×2. The kinematic model of this robot is:

(

ẋ, ẏ, θ̇
)

=
(

cos θ, sin θ, 0
)

u+
(

0, 0, 1
)

v, (1)

where u ∈ {−1,+1} describes the linear velocity and v ∈
[−1,+1] describes the angular velocity. The magnitude of

linear velocity is always 1m/s. Given any two configurations

(x1, y1, θ1) and (x2, y2, θ2) in space, a time-optimal trajectory

connecting them can be computed efficiently [20].

A. Safety Issues: Waypoint Generation

This section addresses the challenges faced by AWGS with

the robot’s motion constraints in unknown environments. Fig-

ure 3b shows that the robot is navigating through a sequence of

corridors to reach the goal at (50,50). However, due to limited

visibility, as the robot comes too close to the corner at around

(10,50), the collision becomes inevitable. The agent did not

take the unforeseeable obstacles in to account, and generated

waypoints that led the robot too close to the obstacles. As

all the possible waypoint locations result in collision, the RL

agent generates a waypoint that crosses the obstacles. The

waypoint generation process thus does not account for possible

future collisions — disregarding safety. RAW addresses this

issue by filtering out the potentially dangerous waypoint

locations, thereby limiting the actions available to the RL

agent, using SDP. The RL agent thus selects waypoints that

guarantee collision avoidance at future time-steps.

B. Convex Semi-Definite Programming (SDP): Filtering

This section discusses the SDP for ellipsoid generation,

which filters out the potentially dangerous waypoint locations.



The ellipsoid is generated such that the robot lies inside

the ellipsoid, obstacles lie outside and the goal may lie

inside the ellipsoid. Also, as discussed earlier, the RL agent

selects one of the N grid-points in the FOV as a waypoint.

Thus, the ellipsoid tries to incorporate as many grid-points as

possible, inside it. Let the robot’s configuration be Ct. Let

Ξ(Ct)
k, k = {1, ..., 4} represent (x, y) coordinates of the kth

corner on the robot’s body. The ellipsoid Ψt, parametrized

by Pt ∈ S2
++, qt ∈ R

2, rt ∈ R, at time t is represented

as Ψt = {x ∈ R
2 |xTPtx + qTt x + rt ≤ 0}. Let zi be the

location of ith, i = {1, ...,m}, point obstacle in the cloud Ot.

Let γj ∈ R
2, j = {1, ..., N}, be the location of jth grid-point

in the robot’s FOV. Let |Pt| denote the determinant of Pt. The

SDP for ellipsoid formation and filtering is:

min
Pt,qt,rt,λ,ν

ν + log(|Pt|
−1) +

N
∑

j=1

λj s.t. Pt � I;

Ξ(Ct)
kPt(Ξ(Ct)

k)T + Ξ(Ct)
kqt + rt ≤ −1

zTi Ptzi + qTt zi + rt ≥ 1, i = {1, ...,m}

γT
j Ptγj + qTt γj + rt ≤ −1 + λj , j = {1, ..., N}

zTg Ptzg + qTt zg + rt ≤ −1 + ν; k = {1, ..., 4}.

λj and ν are the slack variables, allowing the soft constraints

for including the jth grid-point and the goal, respectively,

inside the ellipsoid. If λj ≥ 1, then the jth grid-point is marked

as an infeasible waypoint location. The constraint Pt � I ,

where I ∈ S2
++ is an identity matrix, is a positive definite

constraint on matrix P . The objective log(|Pt|
−1) minimizes

the volume of the ellipsoid. This keeps the volume of ellipsoid

in check, as the inclusion of slack variables (λj and ν) in the

objective results in an expansion (as much as possible) of the

ellipsoid (constrained by the surrounding obstacles). The hard

constraints for the robot and the surrounding obstacles separate

the robot from the obstacles. Minimizing ν is equivalent to

minimizing the distance between the goal and the boundary

of the ellipsoid. Minimizing
∑

j λj results in an inclusion of

as many grid-points inside the ellipsoid as possible. The next

section theoretically guarantees the robot’s safety.

C. Safety Guarantee

The proof of the safety of the robot follows from the

sequence of lemmas and a theorem in this section.

DEFINITION: The region of intersection, Γt+1
t , be-

tween two ellipsoids Ψt(Pt, qt, rt) and Ψt+1(Pt+1, qt+1, rt+1)
formed at time t and t + 1, respectively, is: Γt+1

t = {x ∈
R

2 |xTPtx+ qTt x+ rt ≤ 0, xTPt+1x+ qTt+1x+ rt+1 ≤ 0}.
LEMMA-1: Let Ct be the robot’s configuration at time t,

such that Ψt separates Ξ(Ct) from the surrounding obstacle

cloud Ot. The robot’s new configuration Ct+1 (and hence

Ξ(Ct+1)), after it follows the trajectory to the waypoint for

time ∆T , remains inside Ψt.

Proof: The waypoint is always inside the ellipsoid Ψt.

The trajectory to the waypoint, however, may have some

segment outside Ψt. However, the robot follows the trajectory

only for time ∆T , and there always exists ∆T > 0 such that

the robot remains inside Ψt even when some segment of the

trajectory is outside Ψt. In RAW, auto-tuning of (maximum

limit)1∆T is provided by Ψt through-out navigation.

LEMMA-2 Assume that the SPD is feasible at time t and

returns Ψt. There exists ∆T > 0 such that the robot remains

inside Ψt during navigation for time ∆T along the trajectory.

Proof: If ∆T = 0, then the robot will have to stop

immediately, otherwise it will navigate outside the current

ellipsoid, violating Lemma-1. To show that RAW guarantees

collision avoidance with unforeseeable obstacles, it is essential

to show that the robot always remains inside the current

ellipsoid. Thus, it suffices to show that there always exists

∆T > 0 such that Ct+1 and Ξ(Ct+1) are inside Ψt.

Let there be a function F : R×R
3 → R

3 such that Ct+1 =
F (∆T,Ct), i.e. the robot’s new configuration after it navigates

from its configuration Ct for time ∆T is given by some (non-

linear) mapping F . Thus, to prove that there exists ∆T 6= 0, it

suffices to show that: lim∆T→0+ Ξ(F (∆T,Ct)) ∈ Ψt, where

0+ indicates positive side of 0. This implies that in the worst

case, the robot can take infinitesimally small steps and remain

inside Ψt. Consider a case where Ψt is such that the robot’s

body touches the the {−1} level-set2 of Ψt. Note that the SDP

involves constraints:

Ξ(Ct)
kPt(Ξ(Ct)

k)T + Ξ(Ct)
kqt + rt ≤ −1, k = 1, ..., 4.

Thus the robot’s body can touch {−1} level-set of Ψt. Assume

that the robot’s trajectory requires it to cross the {−1} level-

set (for example, moving outside Ψt). The robot can move

until one of the corners of its body (which is a rectangle)

touches the {0} level-set of Ψt. Thus, a non-zero ∆T implies

non-zero distance between the {0} and {−1} level-sets. It

therefore suffices to show that the distance between the 0
and −1 level-sets of Ψt is non-zero. If this distance is zero,

then ∆T will be 0 — the robot already touches the −1 level

set and therefore cannot move further along any trajectory

requiring it to move towards the higher level-sets. Proving

that the distance between the level-sets is non-zero is tedious

in the non-canonical form. Thus, the ellipsoid is transformed in

to its canonical position using some Euclidean transformation

TE (rotation and translation). Furthermore, with some affine

transformation, TA, the canonical ellipsoid can be transformed

in to a circle. It then suffices to show that: (A) first and

foremost, the resulting circle (0 level-set) has non-zero radius

R1; and (B) the radius of the circle corresponding to −1 level-

set is {R2 |R2 ≥ 0,R1 −R2 > 0}. If R1 = 0, then the {0}
level-set shrinks to a point. Thus, {−1} level-set will also

shrink to a point — implying R1 −R2 = 0. To avoid clutter,

the time-stamp t is removed — Ψt is represented as Ψ and is

parameterized by P ∈ S2
++, q ∈ R

2, r ∈ R. The boundary of

the ellipsoid is given by (x ∈ R
2):

xTPx+ qTx+ r = 0, (2)

1This may be computed analytically for convex-shaped robots, or using a
quadratic program for general shaped robots and is discussed elsewhere [13].

2An α level-set of f : Rn → R is defined as: {z ∈ R
n | f(z) ≤ α}.



where P and q are of the form:

P =

[

u11 u2

u2 u22

]

; q =

[

b1
b2

]

;u11, u22 > 0;u2, b1, b2 ∈ R .

Thus, (2) can be re-written as:

[

x
1

]T





u11 u2
b1
2

u2 u22
b2
2

b1
2

b2
2 r





[

x
1

]

=

[

x
1

]T

Q

[

x
1

]

= 0.

Let b1/2 = u3 and b2/2 = u4. There exists an Euclidean

transformation, TE , that transforms Q to Q̂, such that Q̂ is a

diagonal matrix and it satisfies:
[

TE

[

x
1

]]T

Q̂

[

TE

[

x
1

]]

= 0.

Furthermore, there exists an affine transformation (rotation,

translation and shear), TA, that transforms Q̂ to Q̄, where:

Q̄ =





1 0 0
0 1 0
0 0 Λ



 ; TA

[

TE

[

x
1

]]T

Q̄TA

[

TE

[

x
1

]]

= 0 (3)

for some Λ ∈ R. Note that the above equation represents a

circle, in the new coordinate system, where −Λ is square of

the radius of the circle. These transformations involve pre-

multiplying TE and TA to Q: Q̄ = TATEQ; transformations

are equivalent to some set of elementary row transformations

applied to matrix Q. There exist many such transformations3.

One such sequence of row transformations is:

R3 ← R3 −R1
u3

u11
; R2 ← R2 −R1

u2

u11

R3 ← R3 −R2

u4 −
u2u3

u11

S(u11)
; R1 ← R1 −R2

u2

S(u11)

R2 ← R2 −R3





u4 −
u3u2

u11

r −
u2
3

u11
− (u4 −

u3u2

u11
)2S(u11)−1





R1 ← R1 −R3





u3 − (u4 −
u3u2

u11
)u2S(u11)

−1

r −
u2
3

u11
− (u4 −

u3u2

u11
)2S(u11)−1





R1 ←
R1

u11
; R2 ←

R2

S(u11)

Here: Ri ← Ri −Rjβ means that the components of jth row

are multiplied by β and then component-wise subtracted from

ith row; and S(u11) = u22 − u2u
−1
11 u2 is the Schur Comple-

ment of u11 in matrix P . Applying these transformations to

Q gives the matrix Q̄ (3) with following Λ:

Λ = r −
u2
3

u11
− (u4 −

u2u3

u11
)2S(u11)

−1
= −R2

1. (4)

Matrix P is positive definite if and only if u11 > 0 and

S(u11) > 0. Thus, as P ∈ S2
++:

S(u11) > 0; and u11 > 0. (5)

3Note that the transformations are nothing but converting Q to a Reduced-
Row Echelon form.

In the limiting cases (limS(u11)→0+ , and limu11→0+ ), it is

trivial to show that:

lim
S(u11)→0+

R1 =∞; and lim
u11→0+

R1 =∞ (as S(u11) > 0).

For the limiting case, i.e when R1 approaches ∞, there is

nothing to prove. If R1 =∞, then it means that there are no

surrounding obstacles and the ellipsoid is unbounded. Thus,

it remains to show that R1 > 0, or equivalently: Λ < 0. By

combining (4) and (5), note that to prove Λ < 0 it remains to

show that r < 0.

The SDP in RAW constrains the robot to lie inside the

ellipsoid. The four corner locations at time t, Ξ(Ct), on the

robot’s body are constrained to lie inside Ψt. Thus, the robot’s

position (xt, yt) also lies inside the ellipsoid. Therefore,

[

xt

yt

]T

Pt

[

xt

yt

]

+ qTt

[

xt

yt

]

+ rt ≤ −1

Note that this SDP can be solved in the robot’s local coordinate

frame, where the robot’s current position is the origin and its

current navigation direction is the x−axis. In fact, RAW solves

this SDP in the robot’s local coordinate frame for stability.

Thus, (xt, yt) are both 0, ∀t . Substituting this in the above

inequality, and removing time-stamp, gives:

[

0
0

]T

P

[

0
0

]

+ qT
[

0
0

]

+ r ≤ −1 =⇒ r ≤ −1. (6)

This completes the proof for (A). Note that the SDP can also

be solved in the global coordinate system, and it will require

expanding the square terms and then using a more complicated

relation between the variables instead of r < 0.

To prove (B), applying the identical row transformations for

{−1} level-set gives:

R2 =

√

√

√

√

−(r + 1) +
u2
3

u11
+

(

u4 −
u2u3

u11

)2

S(u11)
. (7)

By combining (7) with (5) and (6) we get R2 ≥ 0. Since

R1 > 0 and R2 ≥ 0, to show R1 − R2 > 0, it suffices to

show R2
1 −R

2
2 > 0. We have R2

1 −R
2
2 = 1. This completes

the proof.

LEMMA-3: The new ellipsoid Ψt+1 is formed such that

Ξ(Ct+1) ∈ Γt+1
t . The robot thus navigates through a sequence

of overlapping ellipsoids.

Proof: From Lemma-1 and 2, we have that Ξ(Ct+1) ∈
Ψt. Let Ot+1 be the point-cloud of obstacles in the robot’s

current FOV. This point cloud is guaranteed to be separated

from Ξ(Ct+1) with an ellipsoid, otherwise these obstacles

would have been discovered in the robot’s FOV at time t.
Also, ∆T is always selected such that the robot does not

reach the waypoint (except when it coincides with the goal).

This ensures that the robot never reaches the boundary of the

FOV even if the waypoint is generated at the boundary of the

FOV. Thus, an obstacle cannot suddenly appear in front of

the robot, i.e., at zero-distance from the robot. Hence, there

exists an ellipsoid Ψt+1 such that Ξ(Ct+1) ∈ Ψt+1 and is



Algorithm 1 RAW

- initialize parameters: RFOV , θFOV , dr, dθ, ǫ, t = 0
- set a maximum limit for ∆T
- initialize the policy π, learned in AWGS architecture

- initialize robot’s position, orientation and goal: z0, θ0, zg

compute N (number of grid-points in the FOV)

while (||zt − zg||2 > ǫ)
Ot ← getPointCloudObstaclesInFOV

computeFeaturesForEachGridPointInFOV

solveSDP

for: j = {1, ..., N}
If (λj ≥ 1)

mark jth grid-point as infeasible

endif

endfor

generateWaypointUsingPolicy π
computeTrajectoryToWaypoint

followTrajectoryForTime ∆T
t← t+ 1; update: zt, θt

endwhile

separated from Ot+1. Furthermore, as Ξ(Ct+1) ∈ Ψt, we have

that Ξ(Ct+1) ∈ Γt+1
t .

THEOREM: Let C0 be such that Ξ(C0) ∈ Ψ0, i.e., the

robot starts from a feasible configuration. Then Ψt exists ∀t =
1, ...,∞, and Ξ(Ct) ∈ Γt+1

t ∀t = 0, ...,∞. The robot thus

navigates through a sequence of overlapping ellipsoids and is

guaranteed to avoid collision throughout the navigation task.

Proof: Follows by combining Lemma-1, 2 and 3.

The complete algorithm is listed in Algorithm 1, and is self-

explanatory using the discussions in the previous sections.

V. EXPERIMENTS: SIMULATION RESULTS

This section empirically demonstrates that RAW guarantees

safety in unknown environments, cluttered with both the

convex and arbitrarily shaped obstacles. To show that RAW

generates close to optimal trajectories, RAW trajectories are

compared with the global optimal and RRT trajectories —

showing that the actions selected by the RL agent lead to

acceptable trajectories. RAW uses the same parameters as

in previous work [14]. These are: {RFOV, dr, θFOV, dθ} =
{5, 0.2, 60, 1◦}; α1 = 200 in the reward function. The robot

has dimensions 1× 1m2. RAW is implemented in MATLAB,

running on a 64-bit Windows 7 notebook with core-i7 2.2

GHz and 8 GB RAM. RRT was run 10 times for each start-

goal configuration, in each of the environmental set-ups. The

default maximum RRT iterations is 104 in each run. RAW

follows a trajectory to the waypoint for time ∆T , which can

be at most 1 s, and then a new waypoint is generated.

A. Performance Evaluation: Convex Obstacles

These experiments empirically show that RAW generates

safe trajectories and measure the optimality of RAW trajec-

tories by comparing the trajectory lengths with the optimal
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Figure 4: This figure shows that RAW trajectories are shorter than both the
average and minimum length (Min-RRT) RRT trajectories in all configura-
tions. RAW trajectories are at most 24% longer than the optimal trajectories.
Environments are sorted by the average RRT performance.
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Figure 5: Sample RAW trajectories for two start-goal configurations. The
robot’s FOV is also shown.

and RRT trajectories. The environment has 7 convex obstacles

(shown in Figure 5). The planners were run in 15 different

start-goal configurations in this environment. RRT trajectories

were averaged over 10 trials for each configuration. Figure 4

compares the algorithms’ performance. RAW trajectories are

shorter than both the average and minimum length (Min-RRT)

RRT trajectories. RAW trajectories are longer than the optimal

trajectories. The maximum ratio of the length of RAW and

optimal trajectories is 1.24. Thus, RAW trajectories are at

most 24% longer than the optimal trajectories. Figure 5 shows

sample RAW trajectories for two start-goal configurations. It

can be seen that the trajectories maintain a safe distance, taking

robot’s dimensions into account, from the obstacles.

B. Performance Evaluation: Arbitrary Obstacles

In this experiment the planners are compared in an environ-

ment with arbitrary shaped obstacles (Figure 7), in 15 different

start-goal configurations. Figure 6 shows the numerical results.

These environments pose a great challenge for RAW as it has

to generate waypoints appropriately to ensure safety of the

robot and also minimize the motion time. It can be seen that

RAW trajectories are longer than the optimal trajectories. The

maximum ratio of the length of RAW and optimal trajectories

is 1.19. Thus, RAW trajectories are at most 19% longer

than the optimal trajectories. Furthermore, RAW trajectories

are shorter than both the average and minimum length RRT

trajectories. Thus RAW generates acceptable trajectories when

planning among arbitrarily shaped obstacles in unknown en-

vironments. Figure 7 shows sample RAW trajectories for

two start-goal configurations. RAW safely avoided non-convex

obstacles, and reached the goal in unknown environments.



2 4 6 8 10 12 14

60

70

80

90

100

Environment

T
ra

je
c
to

ry
 L

e
n
g
th

 (
m

)

 

 

RRT

RAW

Optimal

Min−RRT

Figure 6: This figure shows that RAW trajectories are shorter than both the
average and minimum length RRT (Min-RRT) trajectories. RAW trajectories
are at most 19% longer than the optimal trajectories. Environments are sorted
by the average RRT performance.
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Figure 7: This figure shows sample RAW trajectories for two start-goal
configurations shown in blue and red. The robot’s FOV is also shown.

C. Performance Evaluation: Corridors

These experiments empirically show that RAW successfully

navigates in an structured environment (as shown in Figure 9

— the environment has corridors, effectively providing a

navigation direction) with corridors, in 50 different start-

goal configurations. RRT used 25000 iterations in each run.

Figure 8 shows that both the average and minimum length RRT

trajectories are longer than RAW trajectories. As expected,

RAW trajectories are longer than the optimal trajectories. The

maximum ratio of the length of RAW and optimal trajectories

is 1.17. Thus, RAW trajectories are at most 17% longer

than the optimal trajectories. Figure 9 shows sample RAW

trajectories. In Figure 9b, when the goal is at the top-right

corner, RAW first visited the blocked region of the second

corridor and then turned back to avoid collision. This explains

why RAW trajectories are 10 − 18 m (in Figure 8) longer

than the optimal trajectories in 7 of the 50 configurations.

Also, AWGS collided in the blocked region for the start-

goal configuration shown in Figure 9b, as discussed earlier in

section-IV-A, while RAW succeeded in avoiding the collision.

It should also be noted that one can make the dead-end in

Figure 9 arbitrarily deep, resulting in possibly longer RAW

trajectories. This is because the robot has no prior information

about the path being blocked. However, this is true for any

planner using limited information, and not just for RAW.

To show the robustness of RAW for collision avoidance,

it is compared with AWGS. AWGS is tested in the same 50
start-goal configurations. Navigation is considered successful

if the robot reaches the goal without colliding with any obsta-

cle. RAW was successful in all 50 start-goal configurations,

while AWGS was successful in only 34 configurations. RAW

successfully avoids collisions by filtering out the potentially

dangerous waypoint locations (with SDP) before the collision
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Figure 8: This figures shows that RAW trajectories are shorter than both the
minimum length (Min-RRT) and average RRT trajectories. RAW trajectories
are longer (at most 17%) than the optimal trajectories. Environments are
sorted by the average RRT performance.
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Figure 9: This figure shows sample RAW trajectories for 2 start-goal config-
urations: (a) RAW avoids the dead-ends; and (b) RAW moves towards the
blocked region and then turns back to avoid collision in the dead-end.

becomes inevitable, while AWGS lacks such an ability.

D. Performance Evaluation: Circular Obstacles

These experiments measure the optimality of RAW trajecto-

ries among 48 circular obstacles. The planners were tested in

50 different start-goal configurations. RRT used same param-

eters as in previous experiment. Figure 10 shows that RAW

trajectories are shorter than both the average and minimum-

length RRT trajectories. RAW trajectories are longer than the

optimal trajectories. The maximum ratio of the length of RAW

and optimal trajectories is 1.15. Thus, RAW trajectories are at

most 15% longer than the optimal trajectories. Figure 11 shows

sample RAW trajectories for two start-goal configurations.

E. Computation Time

This section discusses the average computation time of

RAW — running in MATLAB on a Core i7, 2.2 GHz

notebook computer. The SDP in RAW is solved using the

non-commercial solver CVX [2]. RAW was run in 50 dif-

ferent start-goal configurations of the previous section, in a

105 × 105m2 environment shown in Figure 11. The average

computation time per-step of the algorithm is 98.36±8.68 ms.

Thus, RAW can re-plan at ≈ 10 Hz.

VI. CONCLUSION AND DISCUSSION

This paper presented an algorithm for on-line reactive mo-

tion planning in unknown and unstructured environments that:

(i) ensures collision avoidance with unforeseeable obstacles,

and (ii) produces trajectories that are not far from the optimal

trajectories. RAW was tested in four different experimental

setups, testing its performance among all kinds of obstacles.

Thus, theoretical claims were verified empirically. Also, RAW
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Figure 10: RAW trajectories are: (i) shorter than both the average and
minimum-length (Min-RRT) RRT trajectories and (ii) at most 15% longer
than the optimum. Environments are sorted by average RRT performance.

succeeded in cases where AWGS failed, showing significant

safety improvements over AWGS.

RAW trajectories were at most 15 − 24% longer than the

optimal trajectories. Also, RAW produced shorter trajectories

than RRT. This shows that the sequence of locally optimal

actions (as taken by the RL agent) generate reasonably ac-

ceptable trajectories in unknown environments. However, such

a bound (15 − 24%) cannot be guaranteed in general. For

example, as discussed earlier, one can make the dead-end

section in Figure 9 arbitrarily deep, resulting in longer RAW

trajectories. However, this is true for any planner using limited

information, and not just for RAW. At least in environments

with no-dead ends, similar results are expected.

Note that, if the environment has dead-ends RAW is not

guaranteed to converge to the goal. This is because of the

assumption that the robot has no information beyond the FOV.

Also, no map is built on-line, and thus the robot may first

avoid a dead-end, but then may come back (resulting in an

oscillation), when navigating in a corridor type environment.

However, this problem of local oscillation is different from the

problem of local minima as generally observed in potential

field methods. If an on-line map building is allowed, the

robot may successfully avoid such oscillations. However, in the

potential field methods, at least saddle-points are unavoidable

even when the perfect geometric data of the environment is

available [12].

The robot model assumed in this paper was a simple car-like

robot, moving at a constant speed of 1m/s. It was shown that

the distance between the level-sets is finite (R2
1 − R

2
2 = 1).

This ensured safety as the robot can instantaneously change the

direction of velocity. For a general robot model, ideally, one

would like to have this distance to be equal to the minimum

stopping distance of the robot. This would require modifying

the SDP and introducing additional constraints. This extension

to the SDP was beyond the scope of this paper and is therefore

left as a future work.

ACKNOWLEDGMENT

The author gratefully acknowledges the valuable feedbacks

from Matthew E. Taylor.

REFERENCES

[1] O. Brock and O. Khatib. Elastic strips: A framework for motion
generation in human environments. International Journal of Robotics

Research, 21(12), 2002.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

 

 

Start

Goal

Figure 11: Sample RAW trajectories for two different start-goal configurations.

[2] Inc. CVX Research. CVX: Matlab software for disciplined convex
programming, version 2.0 beta. http://cvxr.com/cvx, September 2012.

[3] P. Fiorini and Z. Shiller. Motion planning in dynamic environments
using velocity obstacles. International Journal of Robotics Research,
17(7), 1998.

[4] D. Fox, W. Burgard, and S. Thrun. Dynamic window approach to
collision avoidance. IEEE Robotics and Automation Magazine, 4(1),
1997.

[5] R. A. Knepper and M. T. Mason. Realtime informed path sampling
for motion planning search. In International Symposium on Robotics

Research, 2011.
[6] A. Kushleyev and M. Likhachev. Time-bounded lattice for efficient path

planning in dynamic environments. In IEEE International Conference

on Robotics and Automation, 2009.
[7] Y. Kuwata, G. Fiore, J.E. Teo, E. Frazzoli, and J.P. How. Motion plan-

ning for urban driving using rrt. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2008.
[8] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning.

International Journal of Robotics Research, 20(5):378–400, 2001.
[9] Y. Li and J. Xiao. On-line planning of nonholonomic trajectories in

crowded and geometrically unknown environments. In IEEE Interna-

tional Conference on Robotics and Automation, 2009.
[10] J. Minguez and L. Montano. The ego-kinodynamic space: Collision

avoidance for any shape mobile robots with kinematic and dynamic
constraints. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2003.
[11] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and

control. In IEEE International Conference on Robotics and Automation,
1993.

[12] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation, 8
(5), 1992.

[13] S. Sharma. QCQP-tunneling: Ellipsoidal constrained agent navigation.
In IASTED International Conference on Robotics, 2011.

[14] S. Sharma and M. E Taylor. Autonomous waypoint generation strategy
for on-line navigation in unknown environments. In IROS Workshop on

Robot Motion Planning: On-line, Reactive and in Real-time, 2012.
[15] Z. Shiller and S. Sharma. High speed on-line motion planning in

cluttered environments. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2012.
[16] Z. Shiller, S. Sharma, I. Stern, and A. Stern. On-line obstacle avoidance

at high speeds. International Journal of Robotics Research, 32:1030–
1047, 2013.

[17] R Sutton and A Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[18] A. Undurti and J. P. How. An online algorithm for constrained POMDPs.
In IEEE International Conference on Robotics and Automation, 2010.

[19] A. Undurti and J. P. How. Decentralized risk sharing in teams of
unmanned vehicles. In IEEE International Symposium on Safety,

Security and Rescue Robotics, 2011.
[20] H. Wang, Y. Chen, and P. Soueres. An efficient geometric algorithm

to compute time-optimal trajectories for a car-like robot. In IEEE

Conference on Decision and Control, 2007.
[21] H. Zhang, J. Butzke, and M. Likhachev. Combining global and local

planning with guarantees on completeness. In IEEE International

Conference on Robotics and Automation, 2012.


